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Both classical' and quantum mechanical ** theories of electron transfer (ET)
lead to the now familiar - but nevertheless remarkable - prediction that ET rates
should ultimately decrease with increasing thermodynamic driving force (-AG®).
While these predictions of "invei‘ted" rafe behavior remained controversial and
largely unsupported for a numberbf years,' more recent studies have convincingly
demonstrated their veracity for a.rénge of organic,’ inofganic/organometallic,s and
biological’ redox processes iﬁ both:lig'uid and frozen homogeneous solution
environments. To the best of our knowledge, liowever, the phenomenon has never
been demonstrated for interfacial or electrochemical processes; indeed there are
solid theoretical reasons to suspeci..that interfacial rate inversion would, in many
cases, be impossible.!® Nevertheless, we now report the first experimental
demonstration of fast, inverted, interfacial ET rate behavior and show that it is
broadly consistent with the predictions of‘ the most sophisticated contemporary
theories.?®

The prototypical reaction examined was ET from colloidal TiO, (a large
bandgap semiconductor) to ferricyanide.”'! The reaction was initiated
photochemically by pumping the tail of a direct (i.e. not dye sensitized) molecule-
to-surface charge-transfer transition (eq.lﬁ Amax = 430nm)'*** with the amplified
and doubled output of an Nd:7AG laser (532nm, 2.5ns pulses. 3 to 80mdJ/pulse).
Kinetics were monitored by following (at 488nm) the recovery of the charge-

transfer absorbance.

Fe(CN) 8“ Fe(CN) 6‘. y

, _ ) .
Fe(CN)¢" Ti s hv Fe(CN)* D

Fe(CN)¢* Fe(CN) ;*

FE(CN) 5“ Fe(CN) 61-




For reaction 1, the recovery kinetics are characterized by a short (t = 270ns)

exponential decay and a much longer (us — ms) nonexponential decay.!? While

~ both processes are evidently ET related we will further concern ourselves only
with the better defined, shorter decay. This decay is responsible for roughly half
of the total absorbance change. | |

Interpretation of the short decay in terms of interfacial ET kinetics yields
kep = 3.7 £ 0.4 x 10°%. Variations in pump power (25-fold) confirm that the
decay is truly first order, i.e. effectively a geminate interfacial charge-transfer
process. Temperature variations over an admittedly .narrow raﬁge (25°) show no
detectabl:: change in lifetime, implying an activationless ET process. This result is
fully éonsistent with our prior observation, by tirhe-dependent Raman scattering
methods, that the Franck-Condon barrier to ET is dominated by very high ‘
frequency (ca. 2000 cm™) cyanide stretching modes."!

Variations in driving force were introduced by replacing one CN' ligand with
any of several substituted pyridines.'* Absolute driving forces have yet to be
determined;'® however, relative AG”s can be inferred from Fe(CN),L** potentials
(Table I). Figure 1 clearly shows that log kg dzcreases as the relétive driving
force increases. Control experiments show: 1) no change in ky; with added
(excess) pyridyl ligand, and 2) no absorbance transient ffoﬁ either the TiO, colloid
or the complexes separately.

Expressed as an effective electrochemical transfer coefficient (or Brinsted
slope)'® the log kg/E plot in fig. 1 yields a = -0.2. This result is quantitatively

consistent with the predictions of a multimode quantum rate theory described by




Jortner and co-workers,**® provided that: 1) ET is regarded as highly exothermic,'

2) displacements in high-frequency intraligand modes and, to ~ lesser extent,
intermediate frequency metal-ligand and semiconductor lattice modes provide the
necessary Franck-Condon overlaps,'! 3) the displacements are more-of-less the
same for each memberv of the redox series, and 4) all electrons are supplied at a
single energy at or near the conduction band edge,"” rather than over a range of
energies corresponding to multiple mid-bandgap surface states.

We note that assumption 2 has already been experimentally validated' and
that assumption 3 is at least qualitatively supported be existing studies of the
Fe(CN);L™ series in homogeneous (bimolecular) redox processes.””>  Ifthe
absolute energetics of electron transfer (item 1) can be assessed, then more
detailed confrontations with theory should be possible. Finally, we also hope to
assess the effects of semiconductor electrode potential™* (by replacing colloidal
TiO, with a single, high-area surface’®). This should enable us to test assumption
4 and perhaps also gain significant physical insigflt into the longer timescale

absorbance decay phenomenon.
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Colloidal TiO, samples were prepared as described previously,
utilized in solutions of pH=~2.5. Although this pH lies below the first pK, of

ferrocyanide, the complex appcars to deprotonate upon binding to the

semiconductor."!
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A linear free energy reiationship (LFER) has been reported by Toma and
Creutz (Inorg.Cheim. 1977, 16, 545) for redox quenching of photoexcited
Ru(bpy);** by Fe(CN),L™ species. Although there are caveats (see Toma and
Creutz), the LFER finding is broadly consistent with the idea of
approximately fixed reorganizational energies (fixed vibrational

displacements) for the Fe(CN),L"™ redox series.




Table I. Solution Phase Formal Potentials and Interfacial Electron Transfer

‘Reaction Times for Fe(CN),L™ Species.

L : E{(mV vs. SCE)® t(ns)P
CN' | | 118210 270230
3,5-dirﬁethylpyridine 160+20 280+30
4-methylpyridine 18310 340+40
pyridine 215+10 - 430+40
3-chloropyridine 268+10 680+60
pyrazine-ferrocyanide® ' 393+10 1500+£100

a. Measured in IM NaCl. b. Obtaiued at ca. pH 2.5. c. The reactant was |

(NC),Fe".pyrazine-Fe'(CN),".




Figure Captior

Log kg at colloidal TiO, versus reduciion potentials (solution phase) for

Fe'"(CN),L™ species.
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